
Viscous Fingers: A topological Visual Analytic Approach
Garrett Aldrich∗

Univeristy of California
Davis, USA

Los Alamos National Lab
Los Alamos, USA

Jonas Lukasczyk†

University of Kaiserslautern
Germany

Michael Steptoe‡

Arizona State University
Tempe, U.S.A.

Ross Maciejewski§
Arizona State University

Tempe, U.S.A.

Heike Leitte¶

University of Kaiserslautern
Germany

Bernd Hamann‖
University of California

Davis, U.S.A.

ABSTRACT

We present a web-based visual analytics framework to visualize vis-
cous fingers that combines particle systems, direct volume render-
ing, and graphs. In our first step, we apply a Gaussian filter to
the particle dataset to obtain a voxel representation for the entire
computational domain. Next, we extract and track the viscous fin-
gers using Reeb graphs, where the fingers are treated as level sets
above a user-specified salt concentration. We provide linked views
to compare, browse, and analyze the ensembles in real time. The
major contribution of this technique is an interactive graph which
visualizes the evolution of the fingers over time, i.e., when fingers
are formed, split, merge, and dissolve.

1 INTRODUCTION

The goal of the proposed technique is to visualize viscous fingers
which are areas within the can volume with increased salt concen-
tration. Since it is not obvious how to choose a proper threshold
concentration value, our approach is based on the method proposed
by Lukasczyk et al. [2] which enables users to vary this threshold to
extract different subsets (the fingers) which exceed a defined con-
centration value. The advantage of varying this threshold is that the
users can effectively peal through the layers implied by the concen-
tration values and explore the dataset from different points of view.
For instance, a high threshold filters insignificant fingers while a
low threshold also detects fingers with slightly increased salt con-
centration levels. We track the extracted subsets and visualize their
evolution and computed statistics through graphs.

Specifically, our web-based framework consists of two main
windows: the cinema view (Figure 1) and the detail view (Figure 2).
The user starts in the cinema view which provides overviews across
ensembles and enables users to find interesting datasets by per-
forming queries. Specifically, users can search for fingers above a
given salt concentration, their number, volume, bounding boxes, in-
tegrals, and lifespans. The browser provides a table of pre-rendered
images of relevant datasets and time steps following the cinema
concept [1]. The images can be linked, so that changing the camera
in one picture also updates the other images. If users want to ex-
plore datasets in detail, they will be able to double-click images to
open up the detail view in a new browser-tab. The detail view con-
sists of two elements: the 3D rendering (Figure 5) and an interactive

∗e-mail: aldrich@lanl.gov
†e-mail: jl@jluk.de
‡e-mail: msteptoe@mainex1.asu.edu
§e-mail: rmacieje@asu.edu
¶e-mail: leitte@cs.uni-kl.de
‖e-mail: hamann@cs.ucdavis.edu

graph (Figure 8). The 3D rendering can show the detected viscous
fingers as iso-surfaces of the volume data (5a), the raw data ren-
dered as a particle system (Figure 5b), and the spatial Reeb graph
of the fingers (5b). The major contribution of this technique is the
interactive graph which visualizes the evolution of the fingers over
time, i.e., when fingers are formed, split, merge, or dissolve.

2 DATA PREPROCESSING

To identify structure from the particle data set generated by the sim-
ulation we apply a preprocessing step to estimate the density distri-
bution for salt over the domain. Each particle in the simulation
represents the local salt concentration at that point in the domain.
There are several options for estimating the density distribution
from particle data, however, choosing an optimal method would
require more input from domain experts. Given the constraints of
the challenge, we choose a common method for estimating the den-
sity that adequately demonstrates the effectiveness of our method.
We first represent the domain with a regular voxel grid and aver-
age the salt concentration in each cell of the grid by averaging the
salt density values of all particles in the cell. To deal with gridding
artifacts and reduce high-frequency noise in the density estimate,
we apply low-pass filtering using a Gaussian kernel. The choices
made in both the number of grid cells used when decomposing the
domain, and the amount of smoothing affect the results of our anal-
ysis. In a general sense, a higher-resolution gridding and lower level
of smoothing allows us to identify small-detail structures, at the cost
of an increase in noise which affects the tracking of structures over
time. Instead of choosing single values, we vary these parameters
(32-256 for the grid resolution and 0.5-3.0 for the Gaussian ker-
nel) for several datasets and include them in the ensemble analysis.
This allows the domain expert to compare and contrast the effects
of these parameters. We obtained the best quantitative results using
a mesh resolution between 64 and 128 grid cells (Figure 9), and a
smoothing kernel between 1.0 and 2.0 (Figure 10). Input from do-
main experts and more user studies are needed to evaluate the best
parameters to use, but the values we have chosen demonstrate the
effectiveness of our topological analysis and capability of extraction
of structures representing the viscous fingers. Another advantage of
using a voxel representation is that the size of the voxel data does
not increase with increasing particle number.



3 DATA ANALYSIS

3.1 Identifying Fingers
Figure 3 shows the outline of our detection algorithm. To iden-
tify fingers within the voxel data we start by simply filtering voxels
which are below the user-specified salt concentration level (Fig-
ure 3a). To filter voxels which are considered noise or belong to
the salt supply we derive the spatial Reeb graph (Figure 3b) with
the method proposed by Lukasczyk et al. [2]. This graph repre-
sents the evolution of the fingers in vertical direction (z-direction)
for one single timestep, i.e., the graph is a topological skeleton of
the fingers and as such captures when fingers are formed, dissolve,
merge, and break into parts while sinking. We use this graph to
decompose the voxel volume in z-direction and subsequently check
for each component of the graph whether its associated voxels have
to be filtered out. Specifically, components are identified as part of
the salt supply when their xy-bounding boxes roughly approximate
a square and cover more than half of the can. Valid fingers also
have to be at least two grid cells high to filter out small bumps. As
shown in Figure 4, although the spatial Reeb graph detects bumps
at t0 and t2, they only get classified as fingers when they become sig-
nificantly large enough in time steps t1 and t4, respectively. Those
criteria, however, can easily be adjusted according to the interest
of the domain scientists. After filtering noise and the salt supply
(Figure 3c), we determine the connected components within the
remaining voxels and assign each voxel group a unique, positive
integer ID across the entire simulation (Figure 3d). Voxels not be-
longing to any group have the voxel group ID -1. Furthermore, for
each group we store the integral, number of voxels, bounding box,
min/max value, and center of mass.

In oder to implement this approach efficiently, the concentration
values are represented as a 1D floating-point array and the voxel
group ID of each voxel is stored in an additional integer array of the
same size, also known as the level set matrix (LSM) [2]. Both ar-
rays are passed as data textures to a WebGL shader which performs
direct volume rendering. The shader renders for a given salt con-
centration the iso-surfaces and colors them according to the LSM
(Figure 5a). To enhance spatial perception we also render iso-lines
in z-direction and an outline of the computational domain. It is
also possible to view and superimpose the spatial Reeb graph and
the underlying particle dataset. The rendering of the particles is in-
teractive, i.e., the analyst can filter particles by salt concentration,
adjust the particle sizes, and choose the used color map (Figure 6).
Moreover, the analyst can see what particles belong to which ex-
tracted finger by color coding them according to the LSM. Figure 5
shows the original particle dataset next to the fingers we extracted
with our approach. By varying the concentration threshold for the
finger detection the analyst is able to examine the impact of said
threshold in real time and choose a threshold that seems appropri-
ate to partition the particles into fingers, thus performing real visual
analytics. To enhance spatial perception the particle system is also
rendered with screen-space ambient occlusion.

The computation of the LSM, the direct volume rendering (5122

pixels), and the rendering of the particles (5122 pixels for up to one
million particles) is done at interactive framerates even on devices
with integrated graphic cards. In order to browse through time at
interactive framerates the particle datasets (especially files larger in
size than 30MB) are pre-loaded asynchronously from a web server
by prioritizing files close to the current timestep. If the prototype
system is running on a machine which has direct access to the data
then the loading time will be negligible. Since we only visualize the
positions and concentrations of the particles it would also be possi-
ble to further reduce the file size of the original data by removing
unused values such as velocity. Furthermore, the rendering of the
particles is optional and thus not required to explore the extracted
fingers and their evolution. The only resources required for our ap-
proach are the voxel volumes and the spatio-temporal Reeb graphs,
which both can be loaded in real time.

3.2 Tracking Fingers
In order to track fingers over time we extended the method of
Lukasczyk et al. [2] to derive the Spatio-Temporal Reeb Graph
in 4D space. Hence, nodes in the graph represent 3D volumes (the
fingers) and nodes of adjacent time steps are connected by an edge
iff their associated 3D volumes overlap. Critical nodes within this
graph are nodes with either no previous nodes (birth nodes), no
successor nodes (death nodes), multiple predecessor nodes (merge
nodes), or multiple successor nodes (split nodes). Hence, a birth
node represents the first time a finger is being detected and a death
node marks the last time step before a finger dissolves. Merge nodes
represent the event of multiple fingers joining, while split nodes in-
dicate that fingers break apart.

This graph can be visualized in different ways. We render the
Spatio-Temporal Reeb Graph as a line chart where the x-axis is
time and the y-axis and the line thickness are used to represent some
metric of the fingers, e.g., average z-position, number of voxels, in-
tegral, or finger length. For instance, Figure 7 shows a graph where
the y-axis and line thickness encode average z-position and finger
length, respectively. Birth and death nodes are shown as discs,
while merge and split nodes are shown as diamonds. For better
readability the nodes are labeled with their corresponding time step
and each finger has its own color. If fingers merge the new finger
will inherit the color of its largest predecessor. If a finger splits the
largest successor will inherit the color of its predecessor and the
other fingers will be assigned new colors. This makes it easy to fol-
low the history of a finger and links it to the 3D rendering. Although
this projection is useful to see trends, e.g., that all fingers sinking
down, this graph is highly occluded, especially when the number
of tracked fingers increases. Therefore, it is possible to click on an
edge to highlight all components which are connected to that edge
and blur the rest. We also provide a projection which uses the y-axis
to minimize edge crossings in order to clearly show the evolution
of fingers over time by reducing occlusion (Figure 8). The user can
easily switch between projections and metrics. Furthermore, by
clicking on nodes and edges the user can view information about
the associated finger.

3.3 Summarizing and Comparing Ensembles
We compare and contrast the ensemble members by leveraging a
visualization database framework constructed using the ParaView
Cinema concept [1]. In this image-based approach, we create a
database by analyzing and rendering the dataset with the methods
described in the previous sections. Specifically, we store images
of the particle dataset and the iso-surfaces for varying camera an-
gles, concentration thresholds, time steps, voxel grid resolutions,
and smoothing parameters. In contrast to the WebGL based render-
ing in the detailed view, the pre-rendered images are generated by
ray tracing which allows the use of more advanced lighting models
to better reveal structure and depth.

To explore the image database, we implemented a webbased
viewer that stores and displays the image database (Figure 1). Each
image in the viewer represents a single simulation, analyzed for a
fixed concentration threshold. The camera of an image can be ro-
tated by dragging it with the mouse, emulating real time volumetric
interaction. The user can also use a slider to advance the current
view over time. For comparison purposes, we also allow the user to
sync both the view and the simulation time across all images.

The user can browse through the massive image database by us-
ing an intuitive query interface. Each image in the database is linked
to the parameters used to generate that image and statistical metrics
we calculate based on the spatio-temporal Reeb graph such as the
average density, number, or length of fingers. More meaningful
metrics could be described and included by domain experts, how-
ever; we chose a few simple ones to demonstrate our methodology.
Once the user has discovered a dataset of interest from within the
ensemble, they can explore the simulation in the detail view.



4 CONCLUSION

As a conclusion we directly address the capabilities of our approach
relative to the specific tasks to be performed for the contest.

4.1 TASK 1: Visualization of Viscous Fingers: Basic Vi-
sualization and Ensemble Browsing

How do you achieve (near-)interactive visualization and browsing
of the point data?

• By pre-rendering snapshots which can be browsed within the
cinema viewer (Figure 1) as well as asynchronous pre-loading
of the particle data for the 3D rendering.

How do you represent points?
• As a particle system where each particle is rendered as a ball

where its size and color encode either its salt concentration or
its membership according to the LSM (Figures 5b and 6).

How do you provide the context of the simulation domain?
• We render the outline and the backside of the can in 3D space

(Figure 3).
What steps do you take to address cluttering issues?

• We apply a low-pass filter by performing Gaussian smooth-
ing, thus already filtering noise. Moreover, the user can fo-
cus on a specific part of the Spatio-Temporal Reeb Graph by
clicking on an edge or node, query the cinema database, and
peal through the particle system by filtering particles below a
salt concentration threshold (Figure 6).

4.2 TASK 2: Visualization of Viscous Fingers
Which approach do you use to identify and visually represent the
viscous fingers?

• We represent the can as a voxel volume and fingers are
sub-volumes which have a salt concentration above a user-
specified threshold. The viscous fingers are either visualized
via direct volume rendering (Figure 5a) or by superimposing
the membership and the Spatial Reeb Graph on the particles
by color (Figure 5b).

Does your approach offer (near-)interactive visualization?
• Due to the nature of the cinema approach, the intelligent pre-

loading, and the fast rendering we can achieve interactive
framerates. Nevertheless, if a huge particle file is requested
that is not pre-loaded yet then it will be likely that it takes a
few seconds to load.

What forms of pre-processing are required before visualization?
• In the first step we apply a Gaussian filter on the particle data,

have to pre-compute the spatio-temporal Reeb graphs for
each run, and pre-render snapshots for the cinema database.

4.3 TASK 3: Visualization of Viscous Fingers
How do you quantify and visualize finger properties across time
within an ensemble member?

• We calculate the Spatio-Temporal Reeb Graph (Figures 7 and
8) which visualizes the evolution of fingers and uses the y-axis
as well as the line thickness to encode finger metrics such
as size, lifespan, number of voxels, average z-position, and
integral.

How do you represent the evolution across time of these properties?
• The evolution across time is also visualized through the

Spatio-Temporal Reeb Graph.
How do you allow to interactively focus the visualization on fingers
with particular properties?

• The user is able to click on edges and nodes of the Spatio-
Temporal Reeb Graph to focus on the evolution of a specific
finger. Moreover, the user can query the cinema database to
browse through datasets to meet specific search criteria.

4.4 TASK 4: Ensemble Summarization
How do you summarize and visualize the temporal evolution of
properties of the viscous fingers across the ensemble?

• The Spatio-Temporal Reeb Graph also summarizes the tem-
poral evolution of properties of the fingers by visualizing them
as a compact and comprehensible line chart (Figures 7 and 8).

How do you provide a comparative visualization of different point
cloud resolutions?

• Analysts can compare overviews of different cloud resolu-
tions in the cinema database and perform a detailed compari-
son in the detail view.

How do you allow to interactively use the summary visualization to
focus on ensemble members (and possibly even individual fingers)
with particular properties?

• The cinema view enables searching for ensembles, properties
of their members, and even individual fingers by performing
queries on the cinema database in real time.

4.5 TASK 5: Tying Everything Together
How do you design the visualization interface to accommodate the
different analysis tasks?

• Our prototype provides two views: the cinema (Figure 1) and
the detail view (Figure 2). The cinema view provides an
overview of ensembles and enables users to browse through
the data by performing queries. The detail view is used to ex-
amine one simulation where the data is rendered in real time
and the user is able to browse through time and different con-
centration thresholds.

How interactive is your system?
• Except for pre-loading cache misses the system performs at

interactive framerates.

What is the largest ensemble size that you have successfully applied
your visualization to, and what are the current barriers to moving to
larger ensembles?

• The only barrier is the number of pre-loaded particle datasets
when the analyst wishes to directly compare the extracted fin-
gers with the underlying particle data. However, we empha-
size that rendering of the particle data is optional. To render
the fingers and visualize their properties and evolution it is
only necessary to load the voxel data and Spatio-Temporal
Reeb Graph, which both can be loaded at interactive framer-
ates.

In case you pre-process or resample the data, what are the details of
your approach? Which errors may result from this?

• Since we apply a Gaussian filter we automatically filter parti-
cle anomalies such as particles with a high salt concentration
within a cloud of particles with low salt concentration values.
Our approach currently aims to explore the density of the salt
concentrations rather than isolated particles. In the future a
more sophisticated density estimation should be used to also
correct the density estimation at the boundaries of the domain.

REFERENCES

[1] J. P. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and
M. Petersen. An image-based approach to extreme scale in situ visual-
ization and analysis. SuperComputing 2014, pages 424–434, 01 2014.

[2] J. Lukasczyk, R. Maciejewski, C. Garth, and H. Hagen. Understanding
Hotspots: A Topological Visual Analytics Approach. In Proceedings of
the 23rd SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, GIS ’15, pages 36:1–36:10. ACM, 2015.



Figure 1: Cinema view showing a set of images meeting the users search criteria.

Figure 2: The detail view consisting of the 3D rendering and the spatio-temporal Reeb graph.



a) b) c) d)

Figure 3: The pipeline of identifying fingers: starting with the voxel volume exceeding the concentration threshold (a), we compute the spatial
Reeb graph of said volume (b), then filter the salt supply and noise (c), and finally identify connected components (d).

t0 t1 t2 t3 t4

Figure 4: We use information stored in the spatial Reeb graph to filter noise and only identify fingers which are large enough.

a) b)

Figure 5: Extracted finger volumes rendered via direct volume rendering (a), and particle system with superimposed finger membership and
spatial Reeb graph (b).



Figure 6: Particle system with 1,900,000 points rendered with a diverging color map filtered by salt concentration values: all particles (left),
particles above concentration 100 (middle), and particles above concentration 200 (right).

2626 27

28
29

30
30

30

313131

31

33
33
333333

34

34

34

34
3434

35

35

35
36
3636

37

37
373737 3939 4040

41

4141

42
42
4242 43

43

4444

44

4545

45

45

46

47

47

47

48

48

48

49

50
50

51

51

51

51

52

52

53

53

53

53

55

56

56

57

57

58

58

58

59

60

60

60

60

60

61

61

61

6161

62

62

62

6262

63

63

63

6363

64

time

z

Figure 7: Spatio-Temporal Reeb Graph projected as a line chart where the x-axis is time, the y-axis is the average z-position of a finger, and line
thickness encodes finger length. This projection is used to explore trends and identify outliers while also visualizing the evolution of fingers, i.e.,
the time they appear (discs), disappear (discs), merge (diamonds), and split (diamonds). For better readability the nodes are also labeled with
their corresponding time step.

27

30

31

31

31

33

33

33

34

34

34

34

35

35

36

36

37

37

37

40

40

41

43

44

45

45

46

47

48

48

49 50

51

51

52

53

53

56

57

58 60

61

62

62

63

63

time

fin
ge
rs

Figure 8: Spatio-Temporal Reeb Graph projected as a line chart where the x-axis is time, the y-axis is used to minimize edge crossings, and the
line thickness encodes finger length. This projection is used to visualize the evolution of fingers by reducing occlusion.



Figure 9: Top row: The effect of choosing different grid sizes for estimating the density distribution. A voxel grid with resolution 323 (left), 643

(middle), and 1283 (right) for a single simulation of the .20 particle data ensemble. The higher resolution voxel grid produces smaller, but more
detailed structures. Bottom row: The effect of the grid resolution on different particle sizes. A 1283 resolution is used to estimate the density
distribution for a single run from the simulation with .20 particle resolution (left), .30 particle resolution (middle), and .44 particle resolution (right).
The largest particles require a smaller mesh resolution as the number of particles is not adequate to estimate the density function in the higher
resolution grid.

Figure 10: The effect of Gaussian smoothing on the density estimation. In (left) no smoothing is applied, in (middle) a smoothing kernel of size
1.0 is used, and in (right) a smoothing kernel of size 2.0. The low-pass filter is necessary for removing noise, however applying too large of a
kernel reduces the structural detail of the resulting fingers.


