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ABSTRACT
Analysis of spatio-temporal event data is of central impor-
tance in many domains of science and policy making. Cur-
rent visualization methods rely on animation, small multi-
ples, and space-time cubes to enable spatio-temporal data
exploration. These methods require the user to remember
state spaces or deal with layout occlusions when exploring
their data. To overcome such issues, we propose a novel
visualization technique for such data that applies the topo-
logical notion of Reeb graphs to identify hotspots as areas of
relatively high event density within kernel density estimates.
We illustrate that the topological identification of hotspots
proposed in this paper is able to elucidate lifetime, proper-
ties, and relationships of hotspots by visualizing their tem-
poral evolution based on the spatio-temporal Reeb graph.
To validate our approach, we demonstrate our method on
an epidemiological and a crime dataset. The resulting vi-
sualizations assist users in quickly identifying and compre-
hending important dates, events, hotspot properties, and
relationships between hotspots.

Categories and Subject Descriptors
G.3. [Mathematics of Computing]: Probability and
Statistics—Statistical computing ; J.2 [Computer Appli-
cations]: Physical Sciences and Engineering—Mathematics
and Statistics

Keywords
Spatio-Temporal Event Data, Hotspots, Geovisualization,
Density Estimation, Topology, Reeb Graph

1. INTRODUCTION
Spatio-temporal datasets are common measurements and
appear in many research fields. In general, a spatio-temporal
dataset is a finite collection of points, where each point
ei = (si, ti) represents the location si ∈ R2 and time t ∈ R
of an event ei. For instance, Geoscience researchers often
work with measurements at latitude-longitude points over
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time. Common examples of such datasets are occurrences of
diseases, fires, earthquakes, tsunamis, robberies, and emer-
gency calls. Given such a dataset, analysts are interested
in information hidden within the data, e.g., where are ar-
eas with a high rate of events, how do those areas behave
over time, and what is the relationship between them? Such
areas are commonly referred to as hotspots, and their prop-
erties are essential for understanding spatio-temporal event
data. Spatio-temporal analysis becomes even more difficult
if the datasets are a large collection of events and contain
a complex evolution of hotspots. In those cases, visualizing
the data points directly is prone to change blindness, ambi-
guity, and occlusion [13, 31]. Therefore, a common approach
is to visualize an aggregation of the events, such as a spatio-
temporal density estimate [22, 27]. Yet, to understand the
evolution of hotspots within these estimates, analysts have
to manually compare density images for different time steps
without additional visual support, e.g., analysts have to re-
peatedly watch animations until they are convinced that
they have recognized all of the important information. How-
ever, if the animation contains a huge amount of information
and if the analysts have to keep track of several areas simul-
taneously, then it is likely that the analysts may miss or
misinterpret important information. Thus, the repeated ex-
amination of animations can be exhausting, unreliable, and
leads to a high cognitive load [14, 17].

In this work, we present a method for extracting and visu-
alizing the spatio-temporal trajectories and relationships of
hotspots. While there has been much recent work on trajec-
tory analysis, clustering and visualization, e.g. [1, 30], our
work differs in that we are not explicitly working with trajec-
tory or origin-destination data. Instead, we are calculating
a spatio-temporal density estimate of the input data, and,
subsequently, we are utilizing topological methods to un-
derstand the underlying relationship between hotspots and
their movements. For example, emergency room records are
routinely collected and such records may contain an underly-
ing notion of disease spread, but the records themselves have
no explicit definition of movements. Instead, each record
has only a patient’s address, time of visit, and visit reason.
Looking at some measure of movement within the spatio-
temporal events could provide analysts with insights into
various spread patterns. We visualize these movements by
depicting the evolution of areas within the density estimate
with a high event rate, which we will further refer to as
hotspots. Although this hotspot definition does not con-
sider additional information, such as which infected persons



were in direct contact with each other, our method is capable
of visualizing the underlying pattern of disease spread that
is contained in the density estimate. Such spread patterns
are not limited only to the emergency room events. We can
expand this idea to any spatio-temporal event data, such as
criminal incident reports, economics, and social trends.

In order to find hotspots within the statistical data, both
spatial and temporal patterns need to be explored during
the analysis phase. Our technique visualizes trajectories and
relations of hotspots within event-based data sources by de-
riving a spatio-temporal Reeb graph. For an introduction
to the notion of Reeb graphs we refer the reader to Edels-
brunner et al. [11]. In general, Reeb graphs are used to
illustrate the evolution of level sets of a real-valued function
on a manifold. In the case of our approach, the manifold is a
subset of the spatio-temporal density estimate, and the level
sets are the extracted hotspots. These graphs enable ana-
lysts to quickly identify important topological events, such
as when hotspots appear, disappear, merge, or split. As a
first step, our technique approximates the underlying data
distribution over time through the application of a spatio-
temporal kernel density estimator. This provides us with a
continuous functional representation of the data. Next, we
extract and track areas within the estimates with a density
value above a user specified threshold. Then, our method
derives topological features of these extracted hotspots and
visualizes them as spatio-temporal Reeb graphs. Further-
more, the thickness and location of edges encode the size
and location of their associated hotspots, respectively. We
developed a web-based visualization software to demonstrate
the applicability of our method. The density estimates and
graphs are calculated on the fly and users are able to inter-
actively adjust algorithm parameters, such as the threshold
value and kernel bandwidths. In this way, we can explore
the spread patterns of spatio-temporal event data.

The major contributions of our paper are as follows:
1) The algorithmic extraction of hotspot trajectories

and hotspot evolution within event-based datasets
2) The visualization of those features by Reeb graphs
3) An automatic Minard inspired flow map generation

2. RELATED WORK
Since spatio-temporal datasets are common measurements
and appear in many research fields, several techniques have
been proposed which derive and illustrate properties of those
datasets. Typically, analysts have to manually explore tem-
poral features of spatio-temporal data by either evaluating
abstract mathematical properties, repeatably observing ani-
mations, or examining and comparing time-dependent color-
coded static images, which are likely to be cluttered and am-
biguous as the datasets become larger. This work proposes
a new method to analyze and visualize features of spatio-
temporal data by combining spatio-temporal kernel density
estimations and topological based methods for time-varying
scalar functions.

2.1 Kernel Density Estimations
One important feature of spatio-temporal datasets are areas
with a high rate of events, commonly referred to as hotspots.
Specifically, analysts want to explore how those areas be-
have over time and what their relationship is between each

other. The works of Malik et al. [22], Peters et al. [27], and
Maciejewski et al. [21] describe the problem and present
solutions of tracking and visualizing hotspots inside spatio-
temporal data. A common approach for this task is to use a
kernel density estimate of the observed point patterns. Such
a density estimate extrapolates from single point events to
the entire spatial domain by blurring the points in space and
time, thus yielding a scalar field over the spatial domain. In
contrast to simply plotting the observed points, visualizing
the scalar fields with heatmaps and iso-contours makes it
easy for analysts to quickly identify and examine areas of
interest. For instance, in the work of Malik et al. [22] a vi-
sualization method is presented which uses such kernel den-
sity estimates of recorded incidents to highlight areas where
future incidents may occur. It was shown that this approach
supports decision makers in their task of gaining insight into
the data and allocating resources. Also the methods pro-
posed in Maciejewski et al. [21] deal with the problem of
identifying and visualizing hotspots. Again, a density esti-
mate was used to highlight areas with a high frequency of
events. They propose a system which enables analysts to
calculate the density estimates for different points in time,
visualizes the estimates in linked views, and allows the users
to search for hotspots in space and time. Once more, in the
work of Peters et al. [27] a kernel density estimate was used
to examine temporal trends of hotspots. They propose a
technique which color codes the density estimate according
to the temporal trend, i.e., projecting the temporal com-
ponent of the dataset via colors onto the density estimate.
This approach yields good results as long as the dataset has
a relatively simple temporal trend, but the color coding fails
as soon as clusters overlap in time. Furthermore, to extract
topological features of hotspots, all presented approaches
require the user to manually compare several static images
for different time steps and recognize patterns without ad-
ditional visual support.

2.2 Spatio-Temporal Visualizations
In recent years, many spatio-temporal geo-visualization tech-
niques have been developed for exploratory data analysis.
Many of them have been facilitated to inspire creative think-
ing and provide new insights into the previously unknown
characteristics of original data [2, 4, 28]. Some of the tech-
niques focus on data with spatial and temporal informa-
tion [10, 16, 18]. In the case of spatio-temporal datasets,
most tools display the events as markers at points in a
three-dimensional space-time cube [13, 15], and offer the
user various techniques to project the data onto the spa-
tial and temporal domain, thus creating a two-dimensional
representation. For instance, the toolkit GeoTime [10] is
capable of projecting graphs, paths, and scatter plots inside
the space-time cube onto the geographical map or the time-
line. Although the space-time cube is a useful tool in geo-
visualizations [20], it is still hard for users to recognize the
location and time of certain events. Moreover, it becomes
more difficult to analyze the temporal trends for frequently
occurring events. For example, Nakaya and Yano [25] use
spatio-temporal kernel density estimations of crime events to
render crime density by volume rendering techniques inside
the space-cube. However, it is still a problem to compre-
hend temporal trends and volume rendering also introduces
the problem of occlusion. In this work, we extract volumes
inside a spatio-temporal density estimate and use topolog-



ical based methods to represent those volumes as graphs,
which in turn can be easily projected onto the spatial and
temporal domain.

2.3 Topological Methods for Time-Varying
Scalar Fields

Previous methods lack a visualization which supports ana-
lysts in keeping track of the relationship between hotspots
over time. To track these topological features, this work pro-
poses to visualize the evolution of hotspots within the time-
dependent kernel density estimates using Reeb graphs. The
concept of representing the relationship between specific ar-
eas of time-varying scalar fields through graphs has already
been proposed in several topology related work [11, 19, 23,
26, 29, 34]. The work of Mascarenhas et al. [23], Samtaney
et al. [29], and Ji et al. [19] propose iso-contour based
visualization techniques to track changes of time-varying
scalar fields. After extracting an iso-contour for two adja-
cent time steps, they present methods to examine the devia-
tion of the contours and construct Reeb graphs accordingly.
These visualizations have been proven to be useful tools in
understanding real-valued space-time data from computa-
tional simulations of physical processes, especially since the
graph structures make it easy for analysts to comprehend
the evolution of level sets and detect important iso-values
[11]. Similar methods can even be applied in higher dimen-
sions as proposed in Doraiswamy et al. [35] and Weber et
al. [34]. In both works the researches extract iso-volumes of
four-dimensional temperature fields and subsequently con-
struct Reeb graphs of the extracted iso-volumes. The re-
sulting Reeb graphs, which they call tracking graphs, sup-
port users in tracking the evolution of burning regions in
combustion simulations. These tracking graphs are similar
to our timeline projections, but our graphs are augmented
with additional information and are also projected onto the
spatial domain to illustrate hotspot location, trajectory, and
size, i.e., in contrast to tracking graphs, our graphs also en-
able geographical analysis. In our method, a hotspot is a
subset of scalar field that exceeds a user specified threshold.
This is comparable to the work of Doraiswamy et al. [9] in
which such areas are detected clouds. They also propose a
method to illustrate the trajectory of these areas by visual-
izing the optical flow between to time steps. On the other
hand, our approach uses topological features of the density
estimate to visualize hotspot trajectories by projecting the
spatio-temporal Reeb graph onto the spatial domain. The
approach of Doraiswamy et al. [8] also extracts areas with
a high density from a kernel density estimate. In their case,
the density estimate represents the availability of taxis at a
spatial location during a fixed time period and uses Reeb
graphs to visualize the topology of these areas. However,
they derive Reeb graphs for a fixed point in time, thus vi-
sualizing only the spatial evolution of these areas, whereas
our approach aims to represent the evolution of hotspots in
space and time. Oesterling et al. [26] also apply topologi-
cal analysis to density estimates of multidimensional point
clouds. Specifically, they compute and visualize the nesting
of clusters identified as density maxima. In contrast, our
method aims to describe, extract, and depict the evolution
and trajectories of density clusters (i.e. hotspots).

3. METHOD
The proposed method consists of two steps. First we calcu-
late a spatio-temporal density estimate of the input data.
Then we extract hotspots from this estimate and derive
their topological features via the newly introduced spatio-
temporal Reeb graphs. Finally, the results are visualized in
our web-based spatio-temporal analysis toolbox (STAT).

3.1 Spatio-Temporal Kernel Density
Estimation

In the case of spatio-temporal datasets, we propose the use
of a multivariate kernel density estimation in space and time.
In particular, the proposed approach performs separate den-
sity estimations for the spatial and temporal coordinates of
sample points. The spatio-temporal kernel density estimate
formula is given in Definition 1.

Definition 1. (Spatio-Temporal Kernel Density Estimate).
The spatio-temporal kernel density estimate of a dataset
{e1, ..., en} with ei = ( (xi, yi) , ti ) ∈ R2 × R is given by

λ(x, y, t) =
1

nhth2s

n∑
i=1

KT

(
ti − t

ht

)
KS

(
xi − x

hs
,
yi − y

hs

)
, (1)

where ht is the temporal bandwidth, hs is the spatial band-
width, and KT and KS are the temporal and spatial kernel
functions, respectively.

Definition 1 allows analysts to use different kernels for the
spatial and temporal domain, i.e., Equation 1 can be in-
terpreted as an ordinary multivariate spatial kernel density
estimate, where the temporal kernel additionally calculates
a weight for each sample point. The temporal bandwidth
ht is thereby used to model already known properties of the
dataset, e.g., if it is known that an infectious disease has
an incubation period of approximately one month, then the
likelihood of a new outbreak should only depend on the pre-
vious and upcoming thirty days. Nevertheless, it is a known
problem of spatio-temporal kernel density estimators that
the density estimation near the boundaries is not consis-
tent. There are boundary correction methods available to
correct for those boundary effects, but this is not the scope
of this work.

For the case studies presented in this work, we use a one
dimensional triangular kernel

KT (u) = (1− |u|)1{|u|<1} (2)

as a temporal kernel function, where 1 is the indicator func-
tion. Since we do not intend to predict new outbreaks, but
rather want to gain insight into collected historic data, we
choose a symmetric temporal kernel. This incorporates the
fact that the probability of an event occurring at location s
at time t is also higher if events occurred in the near future
of this location. However, one could also choose an asym-
metric temporal kernel to explore the data from a predictive
point of view [5]. In fact, Equation 1 allows analysts to use
any kernels they think models the underlying scenario best.
As for the spatial kernel function, we use a multivariate mul-
tiplicative Epanechnikov kernel:

KS(u, v) =
9

16
(1− u2)(1− v2)1{ |u|<1 ∧ |v|<1 }. (3)



After the analyst has chosen a spatial bandwidth, temporal
bandwidth, and appropriate kernels, Equation 1 is discretely
evaluated on a grid over the spatial domain. Thus, each eval-
uation of Equation 1 for a constant point in time t over the
gird points yields a two dimensional matrix λt. To allow
analysts to explore the effect of different kernels and band-
widths on the fly, we implemented the density estimation
on the GPU through a custom WebGL shader. Specifically,
the kernel parameters are passed to the shader as uniforms,
and the dataset as a floating point texture. Therefore, the
number of points is limited by the largest supported texture
size, which is for most devices at least a resolution of 20482

points. Our current implementation supports a resolution
of 40962 points up to 1000 time steps over a grid of 1282

cells and is still able to achieve interactive frame rates due
to various optimizations.

3.2 Spatio-Temporal Reeb Graph Derivation
This work proposes the use of Reeb graphs to represent the
topological relationship between hotspots within the spatio-
temporal denstiy estimate. Hence, this section formally de-
fines hotspots and describes a construction algorithm for
spatio-temporal Reeb graphs.

In this work, hotspots are subsets of the domain of the
spatio-temporal density estimate λ : S × T → R with a
density value above a user specified threshold τ (see Defini-
tion 2). Each connected component of such a subset D is a
single hotspot, i.e., two points belong to the same hotspot
if and only if both points are contained in the same con-
nected component of D. The choice of τ thereby influences
the significance of hotspots. For instance, a value of τ near
maxs∈S,t∈T λ(s, t) would only extract areas with a very high
density. The proposed approach aims to visualize the evo-
lution of those hotpots given by the volume D ⊂ S × T .
Therefore, we define an auxiliary function φ : D → T which
returns the temporal coordinate of a point inside the volume.
In other words, φ is the height function of this volume, where
the temporal coordinate of the volume is interpreted as its
height. It is possible to extract for t ∈ T level sets φ−1(t)
of D, and hence an ordinary Reeb graph can be constructed
that represents the topology of the evolution of these level
sets (see Definition 3).

Definition 2. (Hotspot). Let D be a subset of the domain
of the spatio-temporal density estimate λ : S × T → R
such that (s, t) ∈ D iff λ(s, t) ≥ τ for some fixed value
τ ∈ [0,maxs∈S,t∈T λ(s, t)]. Then each connected component
of D is called a hotspot of λ.

Definition 3. (Spatio-Temporal Reeb Graph). For some
value τ , let the subset D be given as in Definition 2, and the
function φ : D → T be given as φ(s, t) = t. Then the Reeb
graph for φ is called the spatio-temporal Reeb graph.

However, in most cases the spatio-temporal density estimate
λ is evaluated on a grid for several points in time, and there-
fore the estimate is given as a three-dimensional lookup
table λ̂[x, y, t]. In this case, D is the set of all cells with

λ̂[x, y, t] ≥ τ , which can be interpreted as a voxel volume.
Algorithm 1 is capable of extracting hotspots from such a
spatio-temporal lookup table. The algorithm requires four
input parameters: the discretized spatio-temporal density

estimate λ̂, the temporal boundary points t0 and tn, and the
threshold value τ for each cell to be part of a hotspot (see
Definition 2). The algorithm constructs an approximation
of the spatio-temporal Reeb graph in a bottom-up approach.
In particular, it uses a data structure called the level set ma-
trix (LSM), which is a regular matrix of the same dimension
as the spatial grid of the discretized density estimate. An
entry of this matrix for time t is either 0 if the corresponding
cell is not part of the voxel volume D, or the value is the
unique identifier (ID) of the component the corresponding
cell is part of. The procedure calculateLSM computes, for a
given time slice of the spatio-temporal density estimate, the
LSM for this slice. The algorithm initializes the LSM with
zero and, subsequently, all cells with a value larger than τ
are marked by −1. So far, a binary partition according to τ
has been obtained, but it is not possible to differentiate be-
tween connected components. Thus, for each cell with value
−1 a common flood fill algorithm is used to assign to each 8-
adjacent cell with the same value a unique ID. After all flood
fill procedures have been performed, each connected compo-
nent has a unique ID for this time slice. Figure 1a and 1b
display two exemplary LSMs for adjacent time steps, where
the first matrix contains three components and the second
matrix two components.

Algorithm 1 Calcualte Spatio-Temporal Reeb Graph

1: procedure SpatioTemporalReebGraph(λ̂, t0, tn, τ)

2: // initialize sets of vertices, edges, and components
3: V = ∅, E = ∅, C = ∅

4: // M1 is the LSM of the previous time step
5: M1 = null

6: // M2 is the LSM of the initial time step

7: M2 = calculateLSM(λ̂[:, :, t0], τ)

8: // create nodes for initial LSM
9: createNodes(V,M2)

10: // for each subsequent time step...
11: for (t = t0 + 1 : tn) do

12: // M1 becomes LSM of last time step
13: M1 = M2

14: // M2 is LSM of the current time step

15: M2 = calculateLSM(λ̂[:, :, t], τ)

16: // create nodes for M2

17: createNodes(V,M2)

18: // connect nodes to preceding nodes
19: connectNodes(V,E,M1,M2)

20: end for

21: // mark critical nodes of the graph (V,E)
22: markCriticalNodes(V,E)

23: // compute components of the graph (V,E)
24: C = computeComponents(V,E)

25: return(V,E,C)

26: end procedure

Algorithm 1 initializes in line 3 the sets of vertices, edges,
and components as empty sets. Since there is no previous



(a) (b) (c)

Figure 1: Example level set matrices for two time steps: (a)
t1 and (b) t2. (c) shows the overlap of the level set matrices
t1 and t2 marked in red.

time step, the LSM of the previous time step is set to null
in line 5. Then the LSM of the initial time step is calculated
in line 7 with the previously described procedure calcula-
teLSM. Afterwards, the procedure createNodes creates, for
each connected component of the LSM, a new node located
at the center of mass of that component. Each node also
stores the size of its associated component. Subsequently,
for each following time step, an LSM and new nodes are
calculated in line 15 and 17, respectively. The procedure
connectNodes in line 19 is used to test the level set matrices
of the current and previous time step for overlaps of their
connected components, which is similar to the methods pro-
posed in G. Ji et al. [19] and D. Silver et al. [32]. Although
more sophisticated approaches could be used, the simple test
for overlaps suffices to demonstrate the concept. If two com-
ponents overlap, then a new edge between their associated
nodes is created. Both IDs just have to be unequal to zero to
qualify for an overlap, hence the identifiers themselves can
be different. In the example of Figure 1, the components of
time slice t1 with ID 1 and 3 overlap with the component
of time slice t2 with ID 1. Hence, the nodes associated with
component 1 and 3 of time slice t1 are connected to the node
associated to the component with ID 1 of time slice t2. Also
the component with ID 2 of time slice t1 has an overlap with
component 2 of time slice t2, so their associated nodes are
connected as well. After the for loop from line 11 to 20,
the intermediate graph (V,E) does not fulfill the definition
of a Reeb graph since there also exist nodes at uncritical
points. Thus, in line 22 the method markCriticalNodes
marks those nodes which have no predecessor, no successor,
or more than one predecessor or successor. As a final step,
the procedure computeComponents parses the graph (V,E)
and groups all edges togehter that belong to a path that
starts and ends at a critical node, and contains only non-
critical nodes in between. Thus, each component represents
an edge of the Reeb graph.

3.3 Spatio-Temporal Reeb Graph
Visualization

To visualize the spatio-temporal Reeb graphs, we imple-
mented the previously described theory in our web-based
Spatio-Temporal Analysis Toolbox (STAT ). Since the appli-
cation is web-based, the visualization is easily accessible,
cross-platform compatible, and does not require the instal-
lation of additional software or plug-ins. The input of the
software is a CSV-File, which contains a list of latitude-
longitude positions and dates. First, the software calcu-
lates a bounding box of the spatial locations and normalizes

Figure 2: Map projection of the spatio-temporal Reeb graph
for τ = 0.12max(λ) of the FMD dataset until April 26. Solid
lines indicate continues movement of hotspots, and dashed
lines merge/split events of hotspots.

them according to the bounding box such that all points
are contained in the unit-square. Then, the software uses
the method described in Section 3.1 to calculate a spatio-
temporal density estimate of the normalized data, where the
user can select the spatial bandwidth, temporal bandwidth,
and the used kernels in real-time. Afterwards, users can
also vary the threshold τ at interactive frame rates to ex-
tract hotspots from the density estimate and derive spatio-
temporal Reeb graphs as described in Section 3.2. The out-
put of the proposed method is highly sensitive to the se-
lected threshold. In fact, there are no τ values that suit
every dataset, thus, the analyst has to vary the threshold to
gain insight into the data by pealing through the density es-
timate. On the other hand, this enables analysts to use the
threshold as a tool to explore the data from different angles,
e.g., high thresholds would filter out insignificant hotspots,
while lower thresholds bundle hotspots which are close to
each other in the spatial domain. We allow users to adjust
the threshold and bandwidths in real time, which enables
them to analyze hotspot properties and nesting. To fur-
ther support the exploration of different thresholds, we also
display the density maxima of the extracted hotspots by a
simple line chart. This chart supports the user in comparing
and filtering the extracted hotspots.

We visualize the spatio-temporal Reeb graphs in two ways:
as a projection onto the map, and; as a projection onto
the timeline. Critical nodes of the graphs are displayed by
different symbols, i.e., birth nodes are visualized by disks,
death nodes with squares, merge nodes with crosses, and
split nodes with diamonds as shown in Figure 2. Besides the
graph connectivity, which represents the topological features
of the hotspots, the thickness of an edge at time t encodes
the size of the associated hotspot at this time. Furthermore,
each edge has the color of its associated hotspot. If a new
hotspot appears, i.e., an edge starts with a birth node, then



it gets a new color. When hotspots merge, then the resulting
hotspot inherits the color of the largest merging hotspot. If
a hotspot splits, then the largest new hotspot inherits the
color of the preceding hotspot, and all the other hotspots
get new colors.

To create a Minard inspired flow map visualization [24], we
project the spatio-temporal Reeb graph onto a map. In par-
ticular, we use the Leaflet Javascript API to generate the
map in the background, which provides geo-spatial context.
For the projection, we simply discard the temporal coordi-
nate of the graph and add a date caption at each critical
node. The solid lines of the graph represent movement of
their associated hotspots, while the dashed lines indicate
discontinuities of the hotspot centers (see Figure 2). For in-
stance, consider the green hotspot of Figure 3b that splits
up from the orange hotspot of Figure 3a. In this particular
case, the green hotspot did not move away from the or-
ange hotspot, instead their areas are simply not connected
anymore, causing the center of mass of the green hotspot
to jump to a new location. These jumps can also occur
during merge events, i.e., in this case the centers of mass
of the merging hotspots jump to the center of the result-
ing hotspot (see Figure 3c-d). Therefore, we use solid and
dashed lines to differentiate between these jumps and actual
movement. To read the graph, users could start at a birth
node and follow the edges until they reach another critical
node. Reading the graph this way enables users to follow
the history of a hotspot, which is similar to Minard’s flow
map visualization [24]. The map also contains a WebGL-
canvas to render the density estimate, the extracted level
sets, and the point data. The density estimate can be ren-
dered by a user specified number of contour lines through a
custom WebGL-shader, and the areas of the level sets are
rendered in the color of their associated Reeb graph edge.
Their boundaries are not rendered with a fixed width; in-
stead, we draw a pseudo border by rendering the density
with a value near the threshold value black. This has the
additional advantage that we can visualize these borderline
areas.

(a) (b) (c) (d)

Figure 3: Examples for jumps of hotspot centers during split
events (a-b) and merge events (c-d). Black crosses indicate
hotspot centers.

To support users in comprehending the temporal evolution
of hotspots and navigating through time, we also project
the spatio-temporal Reeb graph onto the timeline. Since the
spatio-temporal Reeb graph is a part of the spatio-temporal
domain, i.e., it has a latitude, longitude, and a time coor-
dinate, it is possible to project the spatio-temporal Reeb
graph onto the timeline by discarding one spatial dimen-
sion. We chose to discard the longitude dimension, so that
the timeline and the map share the same y-domain, which
makes it easier for users to compare the graphs between both
projections (compare Figure 2 and 5a).

4. CASE STUDIES
In this section, the application of the proposed method is
demonstrated on two datasets. Section 4.1 analyzes an out-
break of foot-and-mouth disease (FMD) during the UK 2001
FMD epidemic, and Section 4.2 analyzes reported crimes in
the City of Chicago (US) from 2013 to 2015.

4.1 Foot-and-Mouth Disease Dataset
The foot-and-mouth disease dataset is part of the R pack-
age stpp [12] and consists of 648 reported outbreaks in the
northern part of Cumbria county (UK). FMD is a highly in-
fectious and severe viral disease of farm livestock that affects
cloven-hoofed animals by causing fever and blisters on the
feet and mouth. The disease can be transmitted by direct
contact with infected animals or through airborne particles
[33]. The UK 2001 FMD epidemic was one of the largest
outbreaks in history and lasted from February till Septem-
ber. Besides the massive environmental fallout, the disease
also had serious economical consequences, such as costs for
countermeasures and compensations for farmers [6].

This case study focuses on the time period starting at the
beginning of the outbreaks in end of February until the dis-
ease was brought under control in the end of April. To cal-
culate the spatio-temporal density estimate λ according to
Section 3.1, one has to choose appropriate kernels and band-
widths KT , KS , ht and hs. In this case study, we model the
FMD outbreak according to official reports [6, 7], university
reports [3], and guidelines [33]. FMD has an approximate
incubation period between two and fourteen days [7, 33],
therefore we set the temporal bandwidth to th = 14 days
and use the triangular temporal kernel given by Equation 2.
In order to quarantine infected farms, the US Department
of Agriculture suggests in their FMD response plan to es-
tablish control areas with a radius of approximately 10km
around the infected premises [33]. Thus, we use this radius
as the spatial bandwidth, i.e., hs = 10km. The spatial ker-
nel used in this case study is a multivariate Epanechnikov
kernel as given in Equation 3. Finally, the lattice on which
Equation 1 is evaluated has a spatial resolution of 128×128
grid points for each day. The resulting density estimates for
representative dates are shown in Figure 4.

Before we analyze the density estimate with our proposed
technique, we evaluate the estimate by comparing it to state-
ments made in official records and reports. Figure 4a shows
that the first hotspot of the epidemic emerged north of
Carlisle on February 28. In fact, the indicated area around
Longtown is considered to be ground zero of the FMD epi-
demic in Cumbria, since many already infected animals have
unwittingly been distributed through the Longtown cattle
market, which is the largest sheep market in England [3,
6, 7]. This lead to outbreaks at close susceptible farms,
which caused the first hotspot to grow. At the same time,
a new hot spot emerged in the south east of Carlisle (see
Figure 4b). Both hotspots grew further and merged during
March (see Figure 4c). Beginning in April, the epidemic
was slowly brought under control by effective and organized
countermeasures such as vaccinations and culling of animals,
causing the main infection to shrink and split into smaller
hotspots until April 28 [6] (see Figure 4d-f).



(a) Feb 28 (b) Mar 5 (c) Mar 22 (d) Apr 08 (e) Apr 23 (f) Apr 28

Figure 4: Representative plots of the spatio-temporal kernel density estimate λ of the FMD dataset.
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Figure 5: Projections of spatio-temporal Reeb graphs of the FMD dataset onto the timeline for different τ values:
(a) τ = 0.12max(λ), (b) τ = 0.07max(λ), and (c) τ = 0.9max(λ).

The major contribution of this work is the spatio-temporal
Reeb graph, which is capable of visualizing such stories al-
gorithmically in a single figure. Thus, analysts are no longer
required to manually compare static density images for dif-
ferent points in time. For instance, we can calculate the
spatio-temporal Reeb graph for the threshold equal to the
first contour line of Figure 4, i.e., τ = 0.12max(λ). Figure 2
and 5a show the projection of this graph onto the map and
the timeline, respectively. The timeline projection makes
it very easy to identify important days and to understand
the underlying hotspot structure, while the spatial projec-
tion additionally provides geographic references. Note, both
projections directly visualize the statements made in the pre-
vious paragraph. The graphs in both projections show that
the first hotspot emerged on February 28, while the spatial
projection also indicates the correct origin near Longtown.
Then, a new hotspot emerged on the March 2, which merged
with the first hotspot around March 8. The thickness of the
lines also encode the size of the associated hotspots, e.g.,
Figure 5a shows that the blue hotspot reached its maxi-
mum at the end of March, coinciding with the official re-
ports which state that the disease reached its peak around
that time [3, 6]. On April 6, April 22, and April 26, small
hotspots split from the main hotspot, indicated by the dia-
mond symbols and the green, red, and purple lines, respec-
tively. The square symbols mark the disappearance of these
small hotspots on April 10, April 24, and April 27. However,
Figure 4 does not show the existence of the purple hotspot
due to the low temporal sampling rate. To compensate for
that, analysts would have to choose a finer temporal reso-
lution and thus manually compare a much higher number
of density images. The spatio-temporal Reeb graph, on the
other hand, is capable of extracting these events algorithmi-
cally and visualizing them in graphs, which are easy to read
and contain all the important information in just one static
image. This shows that the spatio-temporal Reeb graph is
capable of telling the same story as the official reports.

As mentioned in Section 3.3, our method requires the user
to vary the threshold to analyze the data. For example,
a smaller τ value causes Algorithm 1 to additionally con-
sider areas which did not exceed the previous threshold, but
exceed the smaller one. This can be used for anomaly de-
tection, e.g., Figure 5b shows the timeline projection for
τ = 0.07max(λ). For this threshold, the graph consists of
two trees, i.e., the main infection and a remote hotspot.
Note, for the threshold τ = 0.12max(λ) the green hotspot is
discarded for being considered insignificant. By choosing a
low threshold, we smooth out features of the main hotspot,
such as the small hotspots of Figure 5a, but we are now
able to detect hotspots with lower density, such as the green
hotspot of Figure 5b. Conversely, choosing a high threshold
results in a graph that only represents intense hotspots, e.g.,
Figure 5c shows the timeline projection for τ = 0.9max(λ).
This graph shows that the outbreak was most intense from
March 24 through April 4, which is again consistent with
the official reports [3, 6].

4.2 Chicago Crime Dataset
Next we analyze a crime dataset that is available on the
City of Chicago’s Data Portal website. Specifically, we in-
vestigate a collection of 1,680,393 reported incidents of thefts
and robberies in Chicago from 1 January 2001 until 22 June
2015.

Similar to the first case study, we start by choosing appro-
priate parameters for Equation 1. Again, a triangular and
a multivariate Epanechnikov kernel are used as a temporal
and spatial kernel, respectively, and the used lattice has a
resolution of 128 × 128 grid points for each day. To detect
small temporal variances in the data, the temporal band-
width has to be small enough not to smooth out those vari-
ances. Therefore, we use a temporal bandwidth of three
days. To explore the spatial distribution of crimes, we vary
the spatial bandwidth between three and seven kilometers.
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Figure 6: Timeline projections of the spatio-temporal Reeb graphs of the Chicago crime dataset in 2015 for different bandwidths
and thresholds: (a) (τ, hs) = (0.36max(λ), 7 km), (b) (τ, hs) = (0.36max(λ), 3 km), (c) (τ, hs) = (0.05max(λ), 3 km), and
(d) (τ, hs) = (0.86max(λ), 3 km), where λ is the density estimate with (ht, hs) = (3 days, 3 km).

(a) (b)

Figure 7: Extracted hotspots of the Chicaco crime dataset
at 19 June 2015 for (a) hs = 3 km and (b) hs = 7 km.

Using a larger spatial bandwidth causes more smoothing, re-
sulting in simple graphs which can be used to get an overview
of the data. For instance, Figure 6a shows a timeline projec-
tion for hs = 7 km. The projection shows that there exists a
permanent crime hotspot and another hotspot that exceeds
the current selected density threshold only in intervals. To
further examine the spatial distribution of these hotspots,
one can compare these projections with the graphs for a
lower spatial bandwidth, since a lower bandwidth represents
the spatial distribution in more detail. By comparing 6a
and 6b one can see that the hotspots of Figure 6a split into
smaller components, e.g., at 19 June 2015 the permanent
crime hotspot of Figure 6a consists of two separate hotspots
as shown in Figure 6b and 7. Another example is the cyan
hotspot from June 16 to June 21 of Figure 6a which consists
for a lower bandwidth also of two components as shown in
Figure 6b. Just like the spatial bandwidth can be used to ex-
plore the spatial distribution of hotspots, analysts can vary
the temporal bandwidth to explore the temporal distribu-
tion of hotspots. Since there are no optimal bandwidths, it
is crucial that analysts can modify bandwidths and observe
the resulting density estimates in real-time, which is possible
with our current implementation.

As shown in the previous paragraph, the bandwidths can
be used to explore the distribution of hotspots in space and
time. The threshold, however, can be used to to explore the
intensity of hotspots. For example, choosing a low threshold
bundles hotspots that are spatially close to each other. This

Figure 8: Map projection of the spatio-temporal Reeb graph
and extracted hotspots for (τ, hs) = (0.05max(λ), 3 km) of
the Chicago crime dataset at 3 June 2015.

can be used to identify hotspots which are located remotely
to the bundle, e.g., the large blue hotspot of Figure 6c bun-
dles all hotspots of Figure 6b and thus represents them in
one line. At the same time, new hotspots are detected which
are not connected to the bundle and therefore are located
remotely to it. In fact, for τ = 0.05max(λ) it was possi-
ble to identify the O’Hare airport as a crime hotspot, where
the timeline projection shows for which intervals the rate
of crimes was above the threshold. The timeline projection
also shows an anomaly between June 1 and June 3. In par-
ticular, on June 1 a hotspot appeared close to the bundle
and grew until the next day, causing the hotspot to be con-
sidered as part of the bundle on June 2. On June 3 the
hotspot starts to shrink, and therefore is separated from the
bundle again. Figure 8 shows the hotspot bundle (blue), the
airport hotspot (cyan), and the hotspot anomaly (orange).
The map projection of the spatio-temporal Reeb graph does
not contain solid lines, which represents the fact that the
hotspots remain stationary. The dashed, orange line indi-
cates that the orange hotspot was once considered part of
the bundle until June 2.



If one selects a high threshold, most hotspots will be filtered
out and only areas with a very high density are detected
as hotspots. This can be used to search for time intervals
and locations with a relatively high rate of crime. Figure 7d
shows such time intervals for τ = 0.86max(λ). The spatial
projections of these hotspots are all located around the city
center, indicating that most of the crimes are committed
in this area, which intuitively coincides with reality. Each
year form 2001 to 2015 a hotspot is detected in the middle of
March, which could be related to the city’s St. Patrick’s Day
Parade. The timeline projections of all years also show that
the crime rate is most intense from June to August. Again,
this could be related to the increased number of festivals and
other large events during summer.

The benefit of the interactive τ exploration is that the choice
of bins for coloring maps is an extremely difficult task in
spatio-temporal data. If an analyst changes the bin range
each day, they lose coherence between the colors; however,
if the bins are designed to match the entire range, extreme
hotspots, as seen in this case, may be obfuscated by the bin-
ning technique. Given that the cartographic rule of thumb
is 5-7 color intervals on a map, the use of an interactive
threshold combined with the projected Reeb graph can im-
prove the spatio-temporal analysis process.

5. CONCLUSION AND FUTURE WORK
This work proposes a novel technique for visualizing hotspots
within spatio-temporal datasets. In particular, it was shown
how hotspots can be extracted from spatio-temporal ker-
nel density estimates, and how they can be used to de-
rive spatio-temporal Reeb graphs. These graphs elucidate
lifetime, properties, and relationships of hotspots by visu-
alizing their temporal evolution in static images. More-
over, the graphs are easy to read, algorithmically computed,
and visualize trajectory information of event-based datasets.
We demonstrated the application of the method on two
real datasets in our WebGL-based Spatio-Temporal Analysis
Toolbox. With this software, users can explore the density
estimates, the extracted hotspots, and the spatio-temporal
Reeb graphs in real-time. In both case studies, the results
are consistent with the ground truth, yield further insight
into the data, enable reliable data extraction, and visual-
ize information in static images that analysts before had to
extract manually from animations. As such, the proposed
method can be used by analysts as an additional tool to eas-
ily explore hotspots and their properties within event-based
spatio-temporal datasets.

While we have not currently engaged domain experts, we
believe that this work provides benefits not found in current
geovisualization methods. As mentioned previously, current
methods for spatio-temporal analysis rely on either small
multiple, animations, or space time cubes for exploratory
data analysis. Our visual analytics solution extracts hotspots
and directly plots their growth and decay in a single image.
While our approach cannot answer every question an analyst
may ask, it does provide a succinct means of summarizing
important characteristics in such datasets. As such, analysts
can immediately answer questions about when, where, and
for which threshold hotspots emerge, disappear, merge, or
split, while in previous techniques this would require men-
tally combining small multiples, replaying animations, or

rotating the space-time cube. By providing these methods
with a suite of interactive linked views, we are able to sup-
port a variety of analytical processes.

In future work, we plan to extend our approach in several
ways. First, we are going to explore a way to visualize the
underlying hotspot hierarchy for varying bandwidths and
thus provide the user with an interface to effectively se-
lect bandwidths and track their effects. We will also in-
vestigate the applicability of asymmetric kernels and if we
can use them to actually predict hotspots and their proper-
ties. Furthermore, we aim to derive a list of data specific
threshold values to support the analysts in exploring critical
events, such as when hotspots are filtered out. Although the
threshold value τ enables analysts to filter hotspots, we also
plan to extend our technique to track the actual topology
of the density estimate over time, i.e., to explicitly track
the topology of the underlying, time-varying scalar func-
tion. Our method also has some limitations that have to be
solved. For instance, if a hotspot does not contain its cen-
ter of mass, which can be the case for non-convex hotspots,
then the edges of the spatio-temporal Reeb graph might not
correctly indicate the position of the hotspots. Another lim-
itation is that the method only analyzes event-based spatio-
temporal data in its most basic form, i.e., a location-time
pair. It would be possible to adapt the density estimate to
also support event data with associated scalar values, such
as the severity of a reported outbreak, or, more interest-
ingly, datasets that already contain information about the
relationship between events. For example, epidemiological
datasets that contain contact information between infected
persons, or crime datasets that contain the identity of crim-
inals and links between incidents.
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