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The local climate zone (LCZ) classification scheme is a standardization framework to describe the form
and function of cities for urban heat island (UHI) studies. This study classifies and evaluates LCZs for
two arid desert cities in the Southwestern United States – Phoenix and Las Vegas – following the
World Urban Database and Access Portal Tools (WUDAPT) method. Both cities are classified into seven
built type LCZs and seven land-cover type LCZs at 100-m resolution using Google Earth, Saga GIS, and
Landsat 8 scenes. Average surface cover properties (building fraction, impervious fraction, pervious frac-
tion) and sky view factors of classified LCZs are then evaluated and compared to pre-defined LCZ repre-
sentative ranges from the literature, and their implications on the surface UHI (SUHI) effect are explained.
Results suggest that observed LCZ properties in arid desert environments do not always match the pro-
posed value ranges from the literature, especially with regard to sky view factor (SVF) upper boundaries.
Although the LCZ classification scheme was originally designed to describe local climates with respect to
air temperature, our analysis shows that much can be learned from investigating land surface tempera-
ture (LST) in these zones. This study serves as a substantial new resource laying a foundation for assessing
the SUHI in cities using the LCZ scheme, which could inform climate simulations at local and regional
scales.
� 2018 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and
Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY-NC-ND license (http://creati-

vecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The urban heat island (UHI) effect is defined as the phe-
nomenon that an urban area is significantly warmer than its rural
surroundings. UHI magnitude is conventionally quantified through
UHI intensity, denoted as DTu-r, max, which is defined as the maxi-
mum difference between the urban air temperature and the sur-
rounding rural background (Oke, 1973) using either 2-m air
temperature measured in the urban canopy layer or air tempera-
ture measured in the urban boundary layer. In this context, two
main issues have been found for the use of air temperature data
collected from fixed weather stations at screen height. First,
‘‘urban” or ‘‘rural” has no single, objective meaning because the
urban-rural system is complex, and the boundary is always fuzzy
(Stewart and Oke, 2012; Unger et al., 2014). Second, air tempera-
ture data collected from various sites in the urban area can yield
different DTu-r, max values due to distinctive thermodynamic char-
acteristics of surface materials and local surroundings (Stewart and
Oke, 2012; Alexander and Mills, 2014). It is therefore difficult to
compare results across cities. To facilitate inter-site comparison
and improve the effectiveness of measuring the magnitude of the
UHI effect in cities around the world, Stewart and Oke (2012) pro-
posed a classification scheme named Local Climate Zones (LCZs)
that comprises 17 classes based on surface cover properties, struc-
ture, materials, and human activity. Each LCZ class describes either
a built type or a natural land cover type. In addition, the LCZ
classification scheme takes geometric, surface cover, thermal,
radiative, and metabolic properties into consideration that make
each LCZ type unique from the others. The LCZ system can provide
a disjoint and complementary partition of the landscape that cov-
ers major urban forms and land cover types (Stewart and Oke,
2012; Bechtel et al., 2015a,b).

In recent years, studies have employed the LCZ classification
scheme to describe the thermal properties of cities using mobile
measurements, weather station data, remotely sensed images, land
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use and land cover (LULC) data, and urban morphology data
acquired from different sources (Bechtel, 2011; Bechtel and
Daneke, 2012; Alexander and Mills, 2014; Lelovics et al., 2014;
Stewart et al., 2014; Unger et al., 2014; Bechtel et al., 2015a,b,
2016; Leconte et al., 2015; Lehnert et al., 2015; Geletič and
Lehnert, 2016; Geletič et al., 2016; Zheng et al., 2017), and reported
high effectiveness of this scheme. Yet, few studies to date have
been conducted in arid desert cities. Cities such as Phoenix, Arizona
and Las Vegas, Nevada, USA, may exhibit lower daytime tempera-
tures than the surrounding desert due to the ‘‘oasis effect” that cre-
ates a cooling effect (Georgescu et al., 2011; Middel et al., 2014;
Fan et al., 2017; Potchter et al., 2008; Hao et al., 2016). It is there-
fore necessary to evaluate the LCZ classification scheme perfor-
mance for desert cities in arid environments.

Since the 1960s, with the advent of earth-monitoring satellites
and high-resolution digital satellite imagery, remote sensing tech-
nology has been widely utilized to assess the surface UHI (SUHI)
effect using remotely-sensed land surface temperature (LST), or
skin temperature, retrieved from a thermal infrared band image.
Satellite images provide continuous data at large spatial coverage,
but at a relatively coarse temporal resolution (16 days for ASTER
and Landsat data). Although MODIS LST data are collected daily
with both daytime and nighttime observations available, the spa-
tial resolution is too coarse. Remotely sensed data also do not fully
capture radiant emissions from vertical surfaces such as building
walls, because sensors mostly observe energy emitted from hori-
zontal surfaces such as streets, roof tops, and tree tops. Third,
observed radiation travels through the thick and dense atmo-
sphere, requiring radiometrical and atmospherical corrections of
LST data. Nevertheless, satellite imagery provides fine-scale ther-
mal information that is difficult to obtain through transect mea-
surement campaigns or weather station networks and therefore
offer the potential to investigate the SUHI signature of LCZs.

Three popular computer-based approaches to delineate LCZs
have been reported in the literature. The first technique is GIS-
based (Lelovics et al., 2014; Geletič and Lehnert, 2016) and uses
urban structure parameters such as building height, sky view fac-
tor (SVF), and building fractions as inputs to be processed in a
fuzzy preliminary classification and a post-processing scheme.
The output map consists of aggregated LCZ polygons with a mini-
mal size of 500 � 500 m. This method has the aggregation advan-
tage and does not require a selection of training samples.
However, the approach requires large amounts of input data that
vary in quality and accessibility between cities. The second
approach uses satellite remotely sensed data and a classifier, e.g.
random forest (Bechtel and Daneke, 2012; Bechtel et al., 2015a).
This method is more universal and widely accepted, because input
data and software are readily available. It also does not require
software expert knowledge and is less computationally demand-
ing. The third method is an integrated approach (Gál et al., 2015)
that performs post-classification filtering in addition to the
satellite-image based method. It requires a major filter of a specific
resolution (100-m), and the preparation of filter input data is time-
consuming. Taking all the advantages and disadvantages of differ-
ent LCZ mapping methods into consideration, this study uses the
satellite-image based method for LCZ delineation and mapping,
because remotely-sensed imagery has continuous spatial coverage,
is available for various dates, and has high spatial resolution.

To promote the concept of LCZ for arid desert cities, this study
has three main objectives. The first objective is to classify LCZs
for two large desert cities in the Southwestern United States -
Phoenix, Arizona and Las Vegas, Nevada using the World Urban
Database and Access Portal Tools (WUDAPT) LCZ classification
methodology that employs the satellite-image based approach
(Bechtel et al., 2015a,b). Second, we calculate LST averages for each
LCZ in the two cities to investigate SUHI profiles. Finally, we
evaluate LCZ properties for each city based on the attribute ranges
proposed by Stewart and Oke (2012).
2. Study area

Phoenix, Arizona and Las Vegas, Nevada (Fig. 1) are large cities
in the Southwestern United States, typical of hot, subtropical
desert climates (Köppen climate classification: BWh). Phoenix, Ari-
zona is located in the northeast part of the Sonoran Desert and is
the fifth largest city in the United States by population. Las Vegas,
Nevada (28th largest city in the U.S.) is in a basin on the floor of the
Mojave Desert. Both cities are among the hottest of any major city
in the United States, characterized by long, hot summers, warm
transitional seasons, and short, mild to chilly winters. July is the
warmest month with an average high temperature of 41.2 �C in
Phoenix and 40.1 �C in Las Vegas (U.S. Climate Data, 2017). Winter
months feature mean daily high temperatures above 13 �C and low
temperatures rarely below 4 �C.

The average annual precipitation over the past 30 years was
204 mm (8.04 in.) for Phoenix and 106 mm (4.17 in.) for Las Vegas
(U.S. Climate Data, 2017), respectively. Phoenix has higher precip-
itation than Las Vegas due to the North American Monsoon that
normally occurs between early July and early September (Adams
and Comrie, 1997). The monsoonal moisture influx increases
humidity, thunderstorm activity, and can precipitate heavy rainfall
and cause extensive flooding. The highest mean daily precipitation
in Phoenix occurs in July and August with monthly averages of over
23 mm (Balling and Brazel, 1987; Vivoni et al., 2008). Most of the
annual precipitation in Las Vegas falls during the winter months,
but even the wettest month (February) averages only four days
of measurable rain. Las Vegas is among the sunniest, driest, and
least humid locations in North America, with exceptionally low
dew points and humidity that sometimes remains below 10%.
Winds are generally light, but are normally higher in Las Vegas
than Phoenix, both with well-defined diurnal wind regimes
(Stewart et al., 2002). On average, winds are 3–5 m/s in Las Vegas,
and 1–3 m/s in Phoenix.

Another important characteristic shared by both cities, dis-
cussed below, is the similarity in urban morphology and major
LULC types that include open soil, grass, trees, paved and impervi-
ous surfaces, commercial, industrial, and residential areas (Myint
et al., 2015; Wang et al., 2016).
3. Data and methods

3.1. Local climate zone classification

Using the full definition and surface property values of LCZs
proposed by Stewart and Oke (2012) as guidance, together with
supplemental aerial photographs, this study classified LCZs for
the Phoenix and Las Vegas metropolitan areas except built types
1 (compact high-rise), 2 (compact midrise), and 3 (compact low-
rise) for both cities and land cover type A (dense trees) for Las
Vegas, because preliminary evaluation indicated these LCZ classes
are rarely found in the two cities.

Training samples for the LCZ classification were selected using
high spatial resolution satellite imagery in Google Earth. The num-
ber of training samples was determined proportionally to the area
percentage of each LCZ in each city (Table 1). This study follows the
World Urban Database and Access Portal Tools (WUDAPT) method
proposed by Bechtel et al. (2015a,b) using SAGA GIS to perform the
LCZ classification. For the regions of interest in each metropolitan
area, cloud free Landsat 8 images were retrieved for all four sea-
sons for 2014–2016 (Table 2) and resampled to 100-meter resolu-
tion. Then, the ‘‘Local Climate Zone Classification tool” was



Fig. 1. Map of study area showing Phoenix, Arizona and Las Vegas, Nevada in the Southwest U.S.

Table 1
Number of training samples used for each LCZ and each city.

LCZ Phoenix Las Vegas LCZ Phoenix Las Vegas

4: open high-rise 11 29 A: dense trees 29 –
5: open midrise 61 46 B: scattered trees 37 24
6: open low-rise 202 117 C: bush, scrub 40 30
7: lightweight low-rise 49 16 D: low plants 92 64
8: large low-rise 120 73 E: bare rock or paved 23 39
9: sparsely built 45 25 F: bare soil or sand 107 150
10: heavy industry 11 30 G: water 26 9

Table 2
Data description.

Analysis Data Resolution Date
Las Vegas Phoenix

LCZ classification Landsat
Google earth

100 m
(resampled)

02/2014–03/2016 04/2014–12/2014

LULC classification OrbView-5 (GeoEye-1) 1.65 m 10/12/2011 –
NAIP 1 m – 06/07/2010–09/10/2010

SVF Google street view Street-level 2015 2015
LST ASTER (AST_08) 90 m 05/13/2015 (daytime) 05/11/2014 (daytime)

08/11/2016 (nighttime) 05/31/2015 (nighttime)
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executed in SAGA GIS, which uses a random forest classifier to gen-
erate LCZs based on the resampled Landsat images and selected
training areas.

To perform an accuracy assessment, a total of 1000 validation
points were randomly selected for each city based on the classified
LCZ map. The number of validation points of each LCZ class was
determined proportionally to its area fraction. The classified LCZ
maps were compared with Google Earth imagery at each validation
point. User’s accuracy, producer’s accuracy, overall accuracy, and
the Kappa coefficient were calculated based on the confusion
matrix.
3.2. Evaluation of geometric and surface cover properties for LCZs
using LULC and SVF data

Stewart and Oke (2012) suggested value ranges of geometric
and surface cover properties for LCZ classes. Using available data-
sets and products, this study evaluated four surface properties
for the LCZ classification of Phoenix and Las Vegas: building surface
fraction, impervious surface fraction, pervious surface fraction, and
SVF.

The surface area fraction values were derived from LULC maps.
The LULC classification for Las Vegas (Fig. 2b) was performed using



Fig. 2. Classified LULC maps for Phoenix (a) and Las Vegas (b).
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an object-oriented image classification technique performed on an
OrbView-5 satellite (GeoEye-1) image, acquired on October 12,
2011 with 1.65-meter spatial resolution. Three regional subsets
were selected for further analysis, including a typical residential
area on the city-desert fringe, the Strip (downtown area), and a
mixed residential-industrial zone. Each subset was classified into
6 major LULC types: soil, impervious surface, low plants, trees,
buildings, and water. Accuracy was evaluated using stratified-
random points with a minimum of 50 points per class. The overall
accuracy was 82.8% for the fringe area, 84.8% for the Strip, and
75.0% for the industrial zone.

The Phoenix LULC classification (Fig. 2a) was performed using
2010 National Agriculture Imagery Program (NAIP) imagery with
Fig. 3. Street-level SVF maps for P
1-meter spatial resolution that is publicly available through the
Central Arizona-Phoenix Long-Term Ecological Research (CAP
LTER) website at https://sustainability.asu.edu/caplter/data/view/
knb-lter-cap.623.1/. Detailed classification methods and metadata
can also be found on this website. The original map has 13 classes
with an overall accuracy of 91.9% (CAP LTER, 2015). Some classes
were manually grouped together to match the Las Vegas classifica-
tion scheme.

The street-level SVF was calculated for the Phoenix (Fig. 3a) and
Las Vegas (Fig. 3b) metropolitan areas using a method presented by
Middel et al. (2017, 2018, in press). 90-degree field-of-view images
in each cardinal direction and upwards were retrieved from Google
Street View images for any location where images are available.
hoenix (a) and Las Vegas (b).

https://sustainability.asu.edu/caplter/data/view/knb-lter-cap.623.1/
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The images were projected onto a hemisphere using equiangular
projection, and sky pixels were detected using image processing.
SVF was then calculated using the modified Steyn method
(Middel et al., 2017, 2008, in press). Based on LULC data, three sur-
face cover property maps were generated for both cities by calcu-
lating the area percentages of buildings, impervious surface, and
pervious surface within every single 100 � 100 m pixel of the
LCZ classification map. These surface cover property maps and
the SVF map were then intersected with the LCZ map to evaluate
the mean building surface fraction, mean impervious surface frac-
tion, mean pervious surface fraction, and mean SVF for each LCZ in
each city, respectively. These mean values were then compared to
suggested attribute ranges proposed by Stewart and Oke (2012).
3.3. Evaluation of thermal differentiation for LCZs using land surface
temperature data

Air temperature data are the numerical basis of the logical
structure of the LCZ system. Stewart and Oke (2012) used mobile
air temperature observations from three cities to measure thermal
contrasts among LCZ classes. LST was not considered initially,
because LCZs are defined based on typical air temperature profiles.
Here, we investigate if LCZs also exhibit a typical LST signature. LST
data can be derived from remotely sensed thermal infrared (TIR)
satellite images. One widely used product is the Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER) sur-
face kinetic temperature product (AST_08) (Middel et al., 2012;
Myint et al., 2015). AST_08 is processed, calibrated, and distributed
by NASA and USGS (NASA LP DAAC 2001) and is corrected using
the normalized emissivity method (NEM) (Gillespie et al., 1999).
More details on the ASTER LST calculation procedure can be found
on the ASTER LST product webpage at https://lpdaac.usgs.gov/da-
taset_discovery/aster/aster_products_table/ast_08_v003. Based on
availability and image quality, scenes acquired on May 31, 2015
(Fig. 4a) and May 11, 2014 (Fig. 4c) were used for Phoenix for
the daytime (10:30 a.m.) and nighttime (10:30 p.m.) LST analysis,
respectively. For Las Vegas, May 13, 2015 (Fig. 4b) and August
11, 2016 (Fig. 4d) images were used for the daytime and nighttime
LST analysis, respectively. The ASTER scene acquisition dates
match the Landsat 8 image acquisition dates that were used for
the LCZ classification. Pixel values were converted from kinetic
temperature in Kelvin to degrees Celsius. The minimum LST, max-
imum LST, mean LST, and standard deviations were then calculated
for each LCZ class in each city.
4. Results

4.1. LCZ classification result

Fig. 5 shows LCZ maps for Phoenix (Fig. 5a) and Las Vegas
(Fig. 5b), and Table 3 shows error matrices for the classification
accuracy assessment. The overall accuracy of the LCZ classification
is 81.5% and 81.9% for Phoenix and Las Vegas, respectively. The
Kappa coefficient value is 0.792 for Phoenix and 0.788 for Las
Vegas, representing an overall satisfactory classification result.

Fourteen LCZs were classified for each city. Fig. 6 shows exam-
ples of all LCZs using high resolution imagery from Google Earth to
provide a visual representation of each LCZ in a desert city. The
area proportion of each LCZ in each city is shown in Table 4. The
largest and the second largest LCZs in both cities are bare soil/sand
and open low-rise, respectively, which together cover around 80%
of the total metropolitan area. The urbanization process of a desert
city is more inclined to horizontal expansion rather than vertical
development, because more land is available for development than
in other major U.S. cities. Therefore, open low-rise and large
low-rise buildings are the predominant building types in Phoenix
and Las Vegas.

LCZ B (scattered trees) has the smallest coverage in both cities,
as trees are naturally scarce in a desert environment. The predom-
inant vegetation types are bush, shrub, and grass. The area of the
low plant LCZ in Phoenix is larger than any other vegetated area,
because Phoenix has active agriculture in rural areas all year round,
while agriculture is rarely found in Las Vegas.

The pairwise correlation coefficient r is 0.9913 for the LCZ area
proportions between Phoenix and Las Vegas. The correlation is
highly statistically significant (p-value < 0.01), meaning the LCZ
composition and urban structure of the two cities are very
similar.

4.2. Geometric and surface cover properties of LCZ classes in Phoenix
and Las Vegas

The mean values of geometric and surface cover properties per
LCZ for both cities are listed in Table 5. The highlighted values are
either more than 20% lower than the lower end of the value range
or more than 20% higher than the higher end of the value range
proposed by Stewart and Oke (2012). All the other values are con-
sidered acceptable in this study. For the building fraction, most of
the LCZs are within or close to the value ranges except lightweight
low-rise, sparsely built, and heavy industry LCZs. These three LCZs
have significantly lower building fractions than the standard,
because these LCZs are mostly found on the city outskirts or in
far rural areas where building density is much lower than in the
urban area. Especially in the sparsely built LCZ (see LCZ 9 in
Fig. 6), buildings are spaced out and are surrounded by desert open
soil and shrubs. This explains why the pervious fraction is signifi-
cantly higher than the range for this LCZ. All natural land cover
LCZs meet the standard and have less than 10% building surface
fraction in both cities.

The lightweight low-rise LCZ exhibits significantly higher
impervious fractions than the standard. This is because most light-
weight low-rise buildings in the two cities (see LCZ 7 in Fig. 6),
such as mobile park homes and temporary homes on construction
sites, have surroundings that are well-paved using impervious
materials such as asphalt and bricks. The heavy industry LCZ in
Las Vegas has a significantly lower impervious fraction than the
standard. Most industrial areas in Las Vegas are non-paved, and
soil is exposed (see LCZ 10 in Fig. 6), especially in rock quarries
and mining fields. This also explains why the pervious fraction
for the heavy industry is significantly higher than the proposed
value range. All the other built type LCZs and land cover type LCZs
are within the acceptable range of the standard.

The sparsely built and heavy industry LCZs are the only two
zones that have a significantly higher average pervious fraction
than the value range for reasons explained above. All the other
LCZs are within the acceptable range of the standard.

Regarding the SVF, open high-rise, open midrise, lightweight
low-rise, dense trees, and scattered trees all have much higher val-
ues than the proposed range. Unlike other large cities, the average
SVF of open high-rise LCZs in Phoenix and Las Vegas (see LCZ 4 in
Fig. 6) is larger than 0.8. This is due to extremely low height-to-
width ratios of street canyons in desert cities; roads can have up
to 7 lanes. At the same time, high-rise buildings are much shorter
than the major towers and skyscrapers in other large U.S. cities. For
example, the tallest building in Phoenix is the 40-story Chase
Tower, which only rises 147 m above the ground. Las Vegas has
more than 160 high-rises, but they spread out along the Las Vegas
Strip instead of being densely situated in a few blocks. In addition,
trees in a desert environment have much smaller canopy closure.
Both horizontal and vertical spaces are therefore wide open lead-
ing to larger SVFs in Phoenix and Las Vegas than in other major

https://lpdaac.usgs.gov/dataset_discovery/aster/aster_products_table/ast_08_v003
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Fig. 4. LST images from ASTER satellite for Phoenix (a and c) and Las Vegas (b and d).
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U.S. cities. Middel et al. (2018, in press) found that both cities rank
highest in SVF footprints calculated from Google Street View
images for 15 cities around the globe.

4.3. Thermal differentiation of LCZ classes in Phoenix and Las Vegas

Table 6 shows summary statistics of daytime and nighttime LST
for each LCZ and city. For the Phoenix metropolitan area, the bare
rock or paved LCZ has the highest LST during daytime and night-
time among all LCZs. The large low-rise LCZ has the highest LST
at daytime, and the open high-rise LCZ has the highest LST at night-
time in all built types. Water and low plants have the lowest LST at
daytime and nighttime, respectively. Open high-rise has the lowest
LST among all built types during daytime, while sparsely built has
the lowest LST at night.

Las Vegas has a similar LST pattern. Large low-rise is among the
hottest zones for both daytime and nighttime in all LCZs, and the
open high-rise LCZ has the highest LST at nighttime among all built
types. Water has the lowest LST during daytime, while the bush
and scrub LCZ has the lowest LST at nighttime.

Fig. 7 shows the departure from the mean LST for all LCZ classes.
Water, low plants, scattered trees, and dense trees have consis-
tently cooler mean LST than all other LCZ classes during daytime
and nighttime in both cities, with water being the coolest. Bare
rock or paved and large low-rise LCZs show a larger LST departure
from the mean for both daytime and nighttime in both cities. Open



Fig. 5. LCZ classification for Phoenix (a) and Las Vegas (b).

Table 3
Confusion matrix of the LCZ classification for Phoenix and Las Vegas; Overall accuracy of the LCZ classification is 81.5% for Phoenix and 81.9% for Las Vegas; Kappa coefficient is
0.792 for Phoenix and 0.788 for Las Vegas.

C. Wang et al. / ISPRS Journal of Photogrammetry and Remote Sensing 141 (2018) 59–71 65



Fig. 6. Examples of LCZs in Phoenix and Las Vegas from Google Earth imagery.

Table 4
Area proportion of each LCZ in Phoenix and Las Vegas (unit: %).

LCZ Phoenix Las Vegas LCZ Phoenix Las Vegas

4:open high-rise 0.03 0.55 A:dense trees 0.08 –
5:open midrise 0.52 0.14 B:scattered trees 0.02 0.05
6:open low-rise 33.07 34.15 C:bush, scrub 3.72 0.77
7:lightweight low-rise 0.48 0.23 D:low plants 3.98 0.67
8:large low-rise 8.19 6.05 E:bare rock or paved 0.16 3.69
9:sparsely built 2.83 5.48 F:bare soil or sand 46.70 46.97
10:heavy industry 0.07 1.18 G:water 0.14 0.08
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midrise and open high-rise LCZs are the coolest zones with respect
to LST among all built types.
5. Discussion

5.1. Evaluation of the LCZ classification for desert cities

It has been commonly accepted that a target accuracy of 85% is
necessary for thematic mapping via classification analysis using
remotely sensed images (Anderson, 1976; McCormick, 1999;
Scepan, 1999; Foody, 2002, 2008; Wulder et al., 2006). Although
the overall accuracy of our classified LCZ maps is lower than 85%
for both cities, it can be argued that this study was not designed
for a thematic mapping of major LULC classes, but for the newly
developed concept of LCZs. Other studies have classified cities into
LCZs using various datasets including multitemporal and multi-
spectral satellite images, synthetic aperture radar (SAR) data,
weather station data, and mobile measurements, employing differ-
ent methods and classifiers to retrieve LCZs for a city at different
scales (Bechtel, 2011; Bechtel and Daneke, 2012; Alexander and
Mills, 2014; Lehnert et al., 2015; Leconte et al., 2015; Bechtel
et al., 2016). Bechtel et al. (2016) used a combination of multispec-
tral, TIR, and SAR data to perform a LCZ classification and reported
overall accuracies between 50.9% and 98.3%. Bechtel et al. (2015a,
b) used the same classification method as this study to perform a



Table 5
Geometric and surface cover properties of LCZ classes in Phoenix and Las Vegas compared to Stewart and Oke (2012)’s suggested LCZ parameter ranges.

Table 6
Summary statistics of LST per LCZ in Phoenix and Las Vegas.

LCZ Phoenix daytime Phoenix nighttime Las Vegas daytime Las Vegas nighttime

Min. Max. Mean Std. Min. Max. Mean Std. Min. Max. Mean Std. Min. Max. Mean Std.

LCZ 4 (open high-rise) 33.2 59.1 49.7 6.2 22.7 29.5 26.8 1.7 19.0 46.9 35.1 3.3 13.3 36.7 31.3 2.3
LCZ 5 (open midrise) 36.8 61.0 51.6 2.7 20.2 29.5 25.4 1.3 23.2 41.0 35.2 3.0 27.1 34.8 31.1 1.3
LCZ 6 (open low-rise) 31.7 63.6 53.0 3.0 17.5 32.1 25.1 1.2 19.0 47.6 36.1 3.2 10.5 38.6 30.3 1.9
LCZ 7 (lightweight low-rise) 42.6 62.1 53.1 2.9 19.4 31.5 24.4 1.5 29.2 44.7 40.4 1.8 24.2 34.3 30.2 1.5
LCZ 8 (large low-rise) 32.3 75.6 55.1 2.7 18.1 42.7 26.4 1.5 19.0 57.2 38.5 3.2 12.9 38.8 31.2 1.9
LCZ 9 (sparsely built) 34.1 60.6 53.2 2.6 17.9 29.5 23.9 1.1 24.3 43.3 34.9 2.8 7.3 34.7 29.7 2.3
LCZ 10 (heavy industry) 40.6 60.2 54.0 3.5 22.1 29.7 26.1 1.4 22.0 48.9 37.0 3.3 7.3 38.0 30.8 2.2
LCZ A (dense trees) 40.8 55.1 47.8 3.6 23.2 25.2 24.2 0.7 19.0 47.6 33.2 3.8 – – – –
LCZ B (scattered trees) 38.1 59.1 47.2 4.5 21.6 27.2 24.7 1.1 29.3 39.6 33.0 1.8 19.3 31.8 24.5 3.3
LCZ C (bush, scrub) 32.7 64.1 54.1 4.7 20.0 28.5 24.6 0.9 23.0 46.8 37.6 3.2 20.4 33.2 27.9 2.9
LCZ D (low plants) 28.1 65.3 46.2 6.5 16.5 29.5 23.0 1.5 20.8 45.2 30.4 3.5 18.0 34.9 26.9 3.0
LCZ E (bare rock or paved) 37.1 62.8 56.6 2.8 21.9 31.4 28.7 1.6 22.3 44.2 34.9 3.7 19.1 38.0 30.4 1.9
LCZ F (bare soil or sand) 26.0 66.2 54.9 3.5 15.5 34.7 24.8 1.2 19.2 47.1 37.5 3.3 10.4 35.9 29.2 2.0
LCZ G (water) 25.2 61.7 31.0 7.2 19.1 28.5 24.2 2.3 17.0 38.3 23.6 5.6 27.1 35.0 30.5 1.5

Fig. 7. Departure from the mean LST (unit: �C).
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LCZ classification for Huston, Texas, USA and reached an accuracy
of 96%, but their assessment was based on training data only.
Our classification separated validation data from training data
and reached an average overall accuracy of 81.7%, which is there-
fore considered acceptable. It has to be noted that the classification
accuracy for natural classes is generally higher than the accuracy
for built classes.

Selecting an appropriate method and representative training
and validation areas is crucial for LCZ classifications and
subsequent accuracy assessments. The selection of training and
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validation polygons is highly dependent on local expert knowl-
edge. People have varying cognitive interpretations of the urban
landscape, which can significantly influence the classification
result and accuracy. Bechtel et al. (2017) showed this in a LCZ
human influence experiment (HUMINEX). Here, we further found
that selecting training and validation areas for desert environ-
ments is particularly challenging. For example, areas with rela-
tively low coverage of bush and scrub (LCZ C) can be mistakenly
recognized as bare soil or sand (LCZ F). Open low-rise (LCZ 6) in
a xeric or native desert style neighborhood (see examples in
Middel et al., 2014; Song and Wang, 2015) can be mistakenly iden-
tified as lightweight low-rise (LCZ 7). An adequate number of sam-
ples must be selected to minimize the error. Up to date, the
WUDAPT method has been applied to over 50 cities around the
world (Bechtel et al., 2015b; Danylo et al., 2016), but the results
of only few cities have recently been quantitatively validated to
show high mapping accuracies (Danylo et al., 2016; Bechtel et al.,
2015a). It is therefore necessary to perform further testing and val-
idation of the WUDAPT method to produce technically and scien-
tifically sound results and to ensure the quality of LCZ products
(Verdonck et al., 2017).

Table 3 illustrates considerable confusion between LCZ 6 (open
low-rise) and LCZ 7 (lightweight low-rise), and between LCZ 9
(sparsely built) and LCZ F (bare soil or sand) for both cities. Open
low-rise residential areas, especially in xeric or native desert style
neighborhoods, and lightweight low-rise LCZs in both cities are
characterized by single-story buildings surrounded by open soil,
grass, shrubs, and a few scattered trees. Although construction
materials and building styles are quite different, the landscape
design is very similar, which cannot be easily discriminated using
resampled Landsat images at 100-m resolution. The sparsely built
LCZ in a natural desert environment meets the LCZ definition and
criteria (Stewart and Oke, 2012), but it has no significant spectral
difference from open soil and sand, because the area proportion
of buildings to desert is too small. It is also found that in Phoenix,
LCZ 6 (open low-rise) has the lowest user’s accuracy. LCZ 6 was
most often confused with LCZ 8 (large low-rise). Unger et al.
(2014) also reported that properties of open low-rise and large
low-rise LCZs were found to be similar for Szeged, Hungary, which
is in a marine west coast climate zone (Köppen climate classifica-
tion: Cfb). Bechtel et al. (2015a,b) also found misclassifications
between these two LCZ classes in Houston, Texas, USA. Therefore,
the confusions between LCZs is a common issue found in many
cities that is not only caused by the environmental background.
5.2. LCZ properties

The geometric and surface cover properties of classified LCZs in
Phoenix and Las Vegas generally correspond well to those pro-
posed by Stewart and Oke (2012). Nevertheless, some significant
differences were found due to the unique desert urban morphol-
ogy. Our findings suggest that the value ranges for selected LCZs
should be treated as guidelines and could potentially be adjusted
to better reflect the desert morphology. Leconte et al. (2015) also
found discrepancies between observed and suggested geometric
and surface cover properties, reporting that variations may be
caused by different geometric layouts and the amount of greenery
of specific local features. Geletič and Lehnert (2016) studied LCZs
for three mid-sized Central European cities and suggested that,
with respect to the LCZ classification method and procedure, it is
necessary to take specific regional features and the morphological
character of built-up areas into account. Adjusting some surface
fraction intervals and property values seems reasonable when
working with different cities of different regional climate (Geletič
and Lehnert, 2016).
Fig. 8 shows that the lightweight low-rise (LCZ 7) built type
exhibits geometric and surface cover properties that fit well into
the range of open low-rise (LCZ 6). In addition, sparsely built (LCZ
9) is very similar to bare soil or sand (LCZ F). Therefore, additional
information beyond Landsat data (e.g., Sentinels or ASTER) and
improved methods, such as a contextual classifier (Verdonck
et al., 2017) are needed to distinguish those zones. Our study
results suggest that multispectral optical and multitemporal
remotely sensed data may not be sufficient for cities in arid
desert climate regions. Additional datasets, such as TIR and SAR
data, are necessary to differentiate classes between sparsely built
and open low-rise, and between open low-rise and large low-rise
(Bechtel et al., 2016). In addition, SAR data can assist to distin-
guish built type LCZ classes of different heights and surface
roughness.

The SVF is an important indicator of urban morphology for the
LCZ classification. We found that LCZ classes 4, 5, 6, 7, A, and B
exhibit SVF values that are significantly higher than the proposed
value ranges. We acknowledge that the employed SVF approach
is biased towards street canyons and disregards sky obstructions
in parks, backyards, and open spaces. Although Google has started
to acquire panoramic imagery on hiking trails, university cam-
puses, and pedestrian areas attractive to tourists, current Street
View images are not representative of the full spatial extent of a
city, and coverage of rural areas and forests is even sparser. There-
fore, the SVF evaluation method based on Street View images
should be limited to urban, built-up LCZs. We recommend that
the upper boundaries for SVF ranges should be further tested for
all built-type LCZ classes for sprawled desert cities, possibly using
other data products such as LIDAR data in support.

5.3. Thermal differentiation of LCZs and implications for the surface
urban heat island effect

Stewart et al. (2014) encouraged LCZ evaluation studies for
urban environments under various climatic conditions using
observations and model simulations. One of the advantages using
LST data is the ability to adequately represent continuous surface
temperature for both daytime and nighttime for large geographic
areas. The WUDAPT method includes the Landsat thermal band
image to perform LCZ classifications, which could be a potential
source of a methodological bias in the LST analysis. To minimize
this bias, we used LST data derived from a different satellite sensor
(ASTER) that has other data collection dates and times, a different
spatial resolution, and different spectral wavelengths. One issue
that remains though is the LST variation with sensor view angle,
resulting in an effective anisotropy of surface thermal emission
(Vinnikov et al., 2012; Krayenhoff and Voogt, 2016; Dyce and
Voogt, 2018). Krayenhoff and Voogt (2016) modeled anisotropy
for various LCZs using TUF3D-SUM and found a maximum aniso-
tropy magnitude of 8 K for compact high-rise neighborhoods and
around 3 K for open lowrise neighborhoods at 30� Latitude during
daytime. Anisotropy is important to consider in assessing absolute
surface temperatures derived from remotely sensed products but is
of lesser concern in this study. First, anisotropy does not signifi-
cantly impact LST results during nighttime; second, most Phoenix
and Las Vegas LCZs fall into the open low-rise category, which
has a reduced anisotropy.

Geletič et al. (2016) examined daytime LST differences for LCZs
in Prague and Brno, Czech Republic. They found that heavy indus-
try (LCZ 10), compact low-rise buildings (LCZ 3) and compact mid-
rise buildings (LCZ 2) had the highest LST in both cities, while
water bodies (LCZ G) and dense trees (LCZ A) had the lowest. The
LCZ classification results in this study do not include compact
zones, but the highest average LST was found in the bare rock or
paved LCZ (LCZ E), while the lowest LST was observed in the low
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plants zone (LCZ D). These differences are due to the unique desert
urban environment and morphology of our study areas. Our study
conducts separate analyses for daytime and nighttime LST rather
than daytime only; this facilitates further understanding of how
LST and the SUHI vary temporally.

Alexander and Mills (2014) analyzed thermal properties for
LCZs in Dublin, Ireland, and Leconte et al. (2015) evaluated LCZs
for Nancy, France using air temperature. Both studies found that
low plants (LCZ D) were consistently cooler during daytime, while
LCZs with high impervious and building fractions were the warm-
est. Our analysis shows the same result for both Phoenix and Las
Vegas LST, although the U.S. Southwest climate is quite different
from Ireland and France. Vegetation lowers air temperature by
evapotranspiration and shading, but it also exhibits lower LST than
other urban fractions. Therefore, increasing green space is known
to be an effective UHI and SUHI mitigation strategy (Rosenfeld
et al., 1995; Ca et al., 1998; Ashie et al., 1999; Tong et al., 2005;
Yu and Hien, 2006; Yuan and Bauer, 2007; Kong et al., 2016). Both
bare rock and paved zones (LCZ E) are mainly impervious with a
low infiltration rate. Recent studies found that dark impervious
surfaces are the primary cause of SUHI effects in Phoenix (Myint
et al., 2013; Wang et al., 2016). This corresponds to our findings
that LCZs with higher impervious fractions exhibit higher LST than
other zones.

However, our LST results do not compare well with air temper-
ature results for some of the built zones. Lelovics et al. (2014)
found high-rise and mid-rise LCZs to be warmer than low-rise
zones. In contrast, our LST ranking from the highest to lowest
LST is low-rise, midrise, and high-rise for both cities during the
day and a reversed order at night. High-rise buildings are mainly
found in downtown areas for both Phoenix and Las Vegas. Down-
town street canyons potentially create a daytime cooling effect
through shading (Pearlmutter et al., 2009; Middel et al., 2014). At
night, absorbed shortwave radiation that is stored as heat in build-
ings and impervious surfaces during the day is slowly released
after sunset in the form of longwave radiation that heats up the
lower atmosphere (Oke, 1982; Mills, 1999; Bouyer et al., 2009),
but the stored heat also manifests itself in higher LST values. Sim-
ilar to the UHI, the SUHI effect is very pronounced during the eve-
ning in a desert city (Wang et al., 2016). The low-rise LCZs in a
desert environment do not provide much shade during the day-
time, which leads to higher LST, but the stored heat can be quickly
released after sunset due to high SVFs, so the surface cools down
faster than midrise and high-rise LCZs.

6. Conclusions

This study classified and evaluated LCZs for Phoenix and Las
Vegas using the satellite image-based LCZ classification method
developed by Bechtel et al. (2015a,b). Seven built-type LCZs and
seven lateral land cover type LCZs were identified, and the LCZs’
geometric, surface cover, and thermal properties were evaluated
using SVF, LULC, and remotely sensed LST datasets. The overall
accuracy of the LCZ classification reached an average of 81.7%,
which is considered good and acceptable. Mean building fraction,
impervious fraction, pervious fraction, SVF, and LST were
calculated per LCZ for both cities and compared with value ranges
proposed by Stewart and Oke (2012).
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Our findings suggest that the sparsely built LCZ (LCZ 9) in a
desert environment is difficult to distinguish from bare soil or sand
(LCZ F). Moreover, lightweight low-rise LCZ (LCZ 7) and open low-
rise LCZ (LCZ 6) exhibit similar surface cover properties, although
they have a distinct human activity profile. Properties of heavy
industry LCZ (LCZ 10) do not match with proposed value ranges,
and SVF values of open high-rise (LCZ 4), open midrise (LCZ 5),
and lightweight low-rise (LCZ 7) LCZs are all significantly higher
than the LCZ guidelines. Ancillary datasets are necessary to further
distinguish between zones in arid desert cities that have a similar
spectral signature, and upper boundaries of urban morphological
parameters could be adjusted to account for lower height to width
ratios in sprawled desert cities.

This study uses remotely sensed LST data derived from TIR
satellite images rather than air temperature measurements to per-
form a LCZ thermal property assessment. It also separates the anal-
ysis of daytime LST from nighttime. The LST analysis shows that
bare rock or paved (LCZ E) has consistently the highest mean LST
among all the LCZ classes during daytime and nighttime for both
cities, while water (LCZ G) and low plants (LCZ D) have much lower
mean LST. Open high-rise (LCZ 4) exhibits the lowest LST during
the daytime among all the built type LCZs, while it shows the high-
est LST at nighttime for both Phoenix and Las Vegas.

The concept of LCZs is innovative and revolutionary, and many
researchers around the world have started exploring and optimiz-
ing its knowledge structure in the past few years. Although the LCZ
scheme was originally designed to describe distinct local climates
delineated by air temperature, our analysis shows that much can
be learned from investigating LST in these zones.

We point out that a SUHI analysis of LCZs cannot replace an UHI
analysis, because the LST profile of LCZs is different from their air
temperature profile, both spatially and temporally. Yet, a comple-
mentary analysis of LST signatures for LCZs can give valuable
insight into intra-urban LST distributions at the neighborhood
scale and facilitate the assessment of urban form impacts on LST.

When investigating arid desert cities or sprawled environ-
ments, an adjustment of upper boundaries for aspect ratio and
SVF was found to be useful. In the future, more in-depth sensitivity
analyses of the automated LCZ classification approach as well as
analyses of the results’ sensitivity to various parameters (human
and physical) are needed in cities of various climate zones and
urban morphologies around the world.
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